Journal of Navigation and Port Research 2009;33(3):167-174.
Published online April 30, 2009.
38피트급 보급형 고속 카타마란 요트의 구조해석
박주신, 고재용, 이경우, 오우준
Structural analysis of an 38 feet diffusion style for high-speed catamaran yacht
Park, Joo-Shin, Ko, Jae-Yong, Lee, Kyoung-Woo, Oh, Woo-Jun
Abstract
Recently, design technology of has been required such as catamaran yacht with high-speed according to expand a marine leisure industry. The domestic technical development for design and production of yacht is not actively than Canada, USA, Japan etc. However, with further development of yacht design & technology, it is need to develop a key technology related to increase the value of catamaran yacht. In the present paper, new guideline is suggest for catamaran yacht as like kinds of marine leisure ship in order for fundamental structure design and structural analysis for twin-hulled ship yacht and techniques for structural analysis as sea leisure ship in this research. The class of society has not been proposed formally about regulation and methodology for estimation of strength of small hight-speed craft with satisfying two conditions as noted; length less than 50meters, ratio of length to breadth less than 12. In the present study, we were adopted DNV (Yachts, Design Principles, Design Loads, Hull Structural Design) Rule and KR (FRP rule application guide) for scantling of structural members. Furthermore, ABS rule is used for structural calculation about application of loading conditions for catamaran yacht. This study can be available feedback role to manufacture of 38ft diffusion style for catamaran yacht. It is expected that this study will be a good reference in order to design of catamaran yacht with high-speed.
Key Words: Catamaran;Slamming;Bending moment;Finite element method;Structural analysis
TOOLS
METRICS Graph View
  • 424 View
  • 3 Download
Related articles


ABOUT
BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
C1-327 Korea Maritime and Ocean University
727 Taejong-ro, Youngdo-gu, Busan 49112, Korea
Tel: +82-51-410-4127    Fax: +82-51-404-5993    E-mail: jkinpr@kmou.ac.kr                

Copyright © 2024 by Korean Institute of Navigation and Port Research.

Developed in M2PI

Close layer
prev next